Logarithmic Functions: Problems and Solutions

APMA Faculty University of Virginia

July 30, 2024

Instructions

Solve the following problems using the properties of logarithmic functions. The solutions are provided below each problem.

Problems and Solutions

Problem 1

Simplify the expression using logarithmic properties:

 $\log_5(25) + \log_5(5)$

Solution:

$$\log_5(25) + \log_5(5) = \log_5(25 \times 5) = \log_5(125) = \log_5(5^3) = 3$$

Problem 2

Solve for x using the properties of logarithms:

$$\log_2(x) + \log_2(8) = 4$$

Solution:

 $\log_2(x \times 8) = 4 \quad \Rightarrow \quad \log_2(8x) = 4 \quad \Rightarrow \quad 8x = 2^4 = 16 \quad \Rightarrow \quad x = 2$

Problem 3

Express as a single logarithm:

$$\log_3(81) - \log_3(9)$$

Solution:

$$\log_3\left(\frac{81}{9}\right) = \log_3(9) = \log_3(3^2) = 2$$

Problem 4

Use the change of base formula to evaluate the logarithm:

 $\log_4(16)$

Solution:

$$\log_4(16) = \frac{\log_{10}(16)}{\log_{10}(4)} = \frac{\log_{10}(2^4)}{\log_{10}(2^2)} = \frac{4\log_{10}(2)}{2\log_{10}(2)} = 2$$

Problem 5

Simplify the expression:

$$\frac{1}{3}\log_2(8) + \frac{1}{2}\log_2(4)$$

Solution:

$$\frac{1}{3}\log_2(8) + \frac{1}{2}\log_2(4) = \frac{1}{3} \times 3 + \frac{1}{2} \times 2 = 1 + 1 = 2$$

Problem 6

Solve for y in the equation:

$$\log_{10}(y) = \log_{10}(5) + \log_{10}(2)$$

Solution:

$$\log_{10}(y) = \log_{10}(5 \times 2) = \log_{10}(10) = 1 \quad \Rightarrow \quad y = 10$$

Problem 7

Express the logarithmic expression as a sum or difference of logarithms:

$$\log_b\left(\frac{x^2\cdot y^3}{z}\right)$$

Solution:

$$\log_b\left(\frac{x^2 \cdot y^3}{z}\right) = \log_b(x^2) + \log_b(y^3) - \log_b(z) = 2\log_b(x) + 3\log_b(y) - \log_b(z)$$

Problem 8

Use the properties of logarithms to simplify:

$$\log_7(7^4) - 2\log_7(7)$$

Solution:

$$\log_7(7^4) - 2\log_7(7) = 4\log_7(7) - 2\log_7(7) = 4 \times 1 - 2 \times 1 = 4 - 2 = 2$$

Problem 9

Solve the logarithmic equation for x:

$$2\log_3(x) = \log_3(9)$$

Solution:

$$2\log_3(x) = \log_3(9) \quad \Rightarrow \quad \log_3(x^2) = \log_3(9) \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = 3 \text{ or } x = -3$$

Problem 10

Express the following logarithmic expression using the change of base formula:

 $\log_{5}(50)$

Solution:

$$\log_5(50) = \frac{\log_{10}(50)}{\log_{10}(5)}$$